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Capital Operating Time and Working Time in the Production Function: An Evaluation on a Panel of French Firms 
over the Period 1989-2001 
 
Abstract 

While a number of studies have demonstrated the importance of factor utilization in economic 
analysis, the impact of operating hours and/or hours of work in the production function remains 
largely unknown, particularly in terms of the capital operating time. Using French data on 
industrial firms for the period 1989 to 2001, we estimate a Cobb-Douglas production function 
that considers the stocks and both the capital operating time and the working time. We draw on 
the framework defined by Blundell and Bond (2000), assuming that serially correlated shocks 
allow a dynamic representation of the production function, and we use the system generalized 
method of moments for estimation. Splitting capital operating time into shiftwork patterns and 
working time, our results show that shiftwork patterns matter for the estimation of a production 
function while working time is less informative. Specifically, our estimates yield identical output 
elasticities for shiftwork and capital: thus, doubling the shifts is equivalent to doubling the stock 
of capital. In addition, we cannot reject the hypothesis of constant returns to scale and the Cobb-
Douglas specification is accepted when taking into account the capital operating time and/or the 
working time. Otherwise, a Translog production function is more appropriate. 
 
Keywords: Production function; Panel data; Generalized method of moments; Capital operating 
time; Working time 
JEL classification: C33, D24, J23 
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1. Introduction 

Since the beginning of the 1960s, numerous studies have addressed the importance to 

economic analysis of factor utilization, both for the analysis of factor demands (Ball and St. Cyr, 

1966; Brechling and O’Brien, 1967; Nadiri, 1968; Nadiri and Rosen, 1969 and 1973) and 

fluctuations in productivity (Foss 1963) or for formalizing relationships in the input mix 

(Feldstein, 1967; Craine, 1973; Leslie and Wise, 1980; Hart and McGregor, 1987). 
 
Although all of these studies demonstrate the importance of factor utilization to economic 

analysis, none has used the factor utilizations to estimate a production function at the firm level. 

Furthermore, while it is generally acknowledged that the two primary dimensions of factor 

utilization are intensity and duration (Cette and Bosworth, 1995) – the intuition being that the 

services provided by factors of production depend on how intensely and how long they are used 

–  the impact of operating hours and hours of work in the production function remains largely 

overlooked. This oversight appears particularly unfortunate for France, where both capital 

operating time and working time have changed considerably in recent years. In this paper, we 

estimate, for the first time, a production function incorporating capital operating time and 

working time using firms panel data in the case of France.1

 
Our contribution is both empirical and methodological. On the one hand, we derive a general 

specification for a Cobb-Douglas production function incorporating working time and shiftwork2 

using the framework of Blundell and Bond (2000). We also extend this approach to a “flexible” 

Translog production function. On the other hand, we highlight the standard problems 

encountered in the literature and suggest, as in Blundell and Bond (2000), and Blundell, Bond, 

and Windmeijer (2000), to exploit the better finite sample properties of the system GMM 

(GMMS) estimator developed by Arellano and Bover (1995), and Blundell and Bond (1998).  In 

the presence of unobserved heterogeneity and simultaneity, ordinary least squares (OLS) and 

Within estimators generally prove unsatisfactory. In this case, although the first-differenced 

generalized method of moments (GMMD) is frequently used, the properties of this estimator are 

quite weak when, for example, the variables are strongly persistent. The basic idea is thus to 

                                                           
1 Note that it has not yet been done, to our knowledge, for another country at the firm level. 
2 We define capital operating time as the product of working time by a shiftwork indicator synthesizing shiftwork 
patterns at the firm level. 
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estimate a system of equations in both first-differences and levels, where instruments used in 

levels equations are lagged first-differences of the series and are valid under restrictions on the 

initial conditions.  
 

Furthermore, we depart from Blundell and Bond in three directions. First, we use both the 

operating hours and the duration of work in our production function and thus we generalize their 

approach. Second, we assess the robustness of our functional form by estimating a “flexible” 

Translog production function and by evaluating the statistical contribution of capital operating 

time and working time with the test proposed by Bond, Bowsher, and Windmeijer (2001). Third, 

unlike Blundell and Bond (2000), who use the first-step standard errors, we adopt the correction 

proposed by Windmeijer (2004) to obtain robust second-step standard errors. 
 

Our primary results are as follows. First, when we divide capital operating time into a 

function of working time and a shiftwork indicator synthesizing the different shiftwork patterns 

at the firm level, the estimations reveal that the shiftwork indicator is informative and 

statistically significant. Conversely, the working time variable has no explanatory power and 

remains statistically insignificant. This result appears to be attributable to its limited variability 

and to measurement errors. Second, the shiftwork indicator and the capital stock have identical 

output elasticities. Thus, doubling the shifts has the same impact on the output as doubling the 

stock of capital. Third, our empirical evidence suggests that a Cobb-Douglas production function 

is a correct approximation of the technology in our sample. When testing this formulation against 

a more general Translog specification, we find that the Cobb-Douglas formulation cannot be 

rejected when we take into consideration capital operating time and working time. However, the 

Cobb-Douglas specification is rejected if we consider a two-factor production function, e.g. with 

capital and labour stocks. Fourth, we also demonstrate that more plausible results can be 

achieved using the GMMS estimator. This estimator exploits stationary restrictions that remain 

informative even for persistent series as in our sample, and Monte-Carlo simulations show that it 

performs better than other “standard” panel data estimators widely used to estimate production 

functions in the literature. It also confirms the GMMD estimator can be poorly behaved 

especially when the series are highly persistent since lagged levels of series thus provide only 

weak instruments. 
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This paper is organized as follows. In section 2, we review the primary fields of economic 

analysis in which considering factor utilization seems most necessary. In section 3, we present 

the data. In section 4, the theoretical framework and the methodology are explained. In section 5, 

we discuss the results of the estimations. In section 6, we show that the Cobb-Douglas 

specification is a good approximation of the true technology in our sample. Finally, concluding 

remarks are in section 7. 

 

2. Factor Utilization and Analysis of the Input Mix 

The incorporation of factor utilization into economic analysis is based on the intuition that the 

services provided by factors of production depend on how intensely and how long they are used. 
 

Several studies have addressed the importance of factor utilization for analyses of both factor 

demands and short-term productivity fluctuations or the input mix (Ball and St. Cyr, 1966; 

Brechling and O’Brien, 1967; Nadiri, 1968). Therefore, by creating a theoretical link between 

traditional factor-demand models and factor utilization, the model developed by Nadiri and 

Rosen (1973) made a significant contribution to economic theory. Estimations of the factor-

demand model reveal that, in response to cyclical fluctuations in demand, adjustments to the 

desired levels occur more quickly for factor utilization than for stock variables. Several studies 

performed on French data that drew on this work also emphasized the impact of factor utilization 

(Cette, 1983; Cueva et al., 1993; Cueva, 1995). Analyses of long-term productivity changes also 

benefited from inclusion of variations in the capital utilization. Foss’s (1963) pioneering work 

revealed a significant positive contribution of the capital utilization to the evolution of 

productivity growth in the United States. In France, Cette (1990) underscored the cyclical profile 

of capital operating time and its consequences for the apparent productivity of capital. 

On the other hand, including factor utilization in production functions is also important: 

adjustments to factor stocks take time while the extent to which they are used can vary rapidly. 

Several studies on data from the United States (Craine, 1973), the United Kingdom (Feldstein, 

1967; Leslie and Wise, 1980), Germany (Hart and McGregor, 1987), and France (Cueva and 

Heyer, 1997; Heyer, 1998) have estimated production functions incorporating factor utilization. 

In France, the policy of working time reduction stimulated reflection on the role of factor 

utilization in the economy (Cahuc and Granier, 1997; Gianella and Lagarde, 1999). 
 

5 



Capital Operating Time and Working Time in the Production Function: An Evaluation on a Panel of French Firms 
over the Period 1989-2001 
 

However, studies that have validated the importance of factor utilization in economic analysis 

have rarely considered the capital utilization. This imbalance is illustrated in Table 1, where 

estimation results for a Cobb-Douglas function incorporating factor utilization are summarized. 

Moreover, even when capital utilization is included in the production function, heterogeneous 

indicators are used: some studies have used measures of capital utilization while others retained a 

utilization rate that is nearer to an intensity of use. Thus, the capital operating time is rarely used. 

Furthermore, the only study integrating both operating hours and hours of work into a production 

function (Cueva and Heyer, 1997) was conducted on macrosectoral data and yielded 

unsatisfactory results. The output elasticity of capital operating time shows little significance and 

the output elasticity of capital exceeds the output elasticity of labour. 
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Table 1 : Estimates of a Cobb-Douglas with Factor Utilization in the Literature 

 Kβ  Lβ  DHTβ  NOPβ  Methodology Data 

Feldstein (1967) 0.26 0.73 1.71  

(0.01) (0.009) (2.19) 

Instrumental 
variables 

Panel “Industry”, The 
United Kingdom 

Craine (1973) -0.07 
(0.07) 

0.80 
(0.04) 

1.98 
(0.13) 

 OLS Panel “Industry”, The 
United States 

Leslie and Wise 
(1980) 

0.24 
(0.01) 

0.78 
(0.01) 

1.61 
(0.18) 

 OLS Panel “Industry”, The 
United Kingdom 

Leslie and Wise 
(1980) 

0.32 
(0.03) 

0.64 
(0.04) 

0.64 
(0.11) 

 OLS 
(sectorial fixed 

effects) 

Panel “Industry”, The 
United Kingdom 

Anxo and 
Bigsten (1989) 

0.56 
(0.09) 

0.61 
(0.02) 

  Instrumental 
variables 

Panel “Industry”, 
Sweden 

Anxo and 
Bigsten (1989) 

0.46 0.68 0.98  Instrumental 
variables 

Panel “Industry”
Sweden  (0.02) (0.014) (0.12) 

, 

Anxo et alii 
(1989) 

0.51 
(0.02) 

0.63 
(0.014) 

0.91 
(0.15) 

-0.21* 
(0.08) 

Instrumental 
variables 

Panel “Industry”, 
Sweden 

Hart and Mac 
Gregor (1988) 

0.47 
(0.20) 

0.73 
(0.16) 

0.55 
(0.15) 

 Instrumental 
variables 

Panel “Industry”,  
Germany 

Hart and Mac 
Gregor (1988) 

0.73 
(0.16) 

0.31 
(0.12) 

0.82 
(0.36) 

0.32 
(0.01) 

Instrumental 
variables 

Panel “Industry”,  
Germany 

Cueva and 
Heyer (1997) 

0.19 
(0.12) 

0.72 
(0.11) 

1.54 
(0.47) 

 OLS Sectoral Panel, France 

Cueva and 0.73 1.89 0.88 1.59** OLS 
Heyer (1997) 

Sectoral Panel, France 

(0.11) (0.50) (0.10) (0.87) 
Gianella and 

Lagarde (1999) 
0.21 
(0.00) 

0.83 
(0.00) 

0.22* 
(0.10) 

 OLS Sectoral Panel, France 

Gianella and 
Lagarde (1999) 

0.19 
(0.08) 

0.83 
(0.10) 

0.88* 
(1

 GMMS Sectoral Panel, France 

.82) 
Blundell and 
Bond (2000) (0.07) (0.09) United Kingdom 

0.23 0.77   GMMS  Panel “Industry”, The 

Note : Standard deviations parentheses 
*  capital utilization is approximated by the utilization capacity rate.  
** denotes that the coefficient is not significant at the 10% level. 
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In this respect, using firm-level data is of particular interest for analyzing working time and 

ng time. Their greater variability along with their microeconomic character give 

pa

capital operating time and working time. 

T

abs  The second reason relates to the difficulty of 

uno

em

me ctory results: low and often insignificant capital 

 

of a

we nce to obtain factor stocks and 

durations of utilization at the firm level. 

type production function including capital operating time and working time. 

Fra

Op

• , is real value added at factor cost. It is computed using accounting 

ver time 

(OECD 2001), the capital stock considered is the gross capital stock. It is computed using 

capital operati

nel data a clear edge over aggregate macroeconomic series for studying the choices and 

behaviour of firms. However, to our knowledge, there are no studies on individual data that 

estimate a production function including both 
 

here appears to be two reasons for this lack, at least in the case of France. The first is the 

ence of data on capital operating time.

estimating a production function on individual data. Considering simultaneity bias and 

bserved heterogeneity generally yields particularly disappointing results. Thus, as 

phasized by Griliches and Mairesse (1997), “In empirical practice, the application of panel 

thods to micro-data produced rather unsatisfa

coefficients and unreasonably low estimates of returns to scale.”  

Nonetheless, (i) Blundell and Bond (2000) define a formal framework allowing the estimation 

 Cobb-Douglas type production function which yields particularly interesting results, and (ii) 

 are able to combine two databases of the Banque de Fra

 
Having overcome these two limitations, we propose the first estimation of a Cobb-Douglas 

 

3. The Data 

The sample used for the estimations was generated by combining two of the Banque de 

nce’s data files: data from the Balance-Sheet Data Office and the Annual Survey of Capital 

erating Time in Industry.3

The dependent variable, Y

data from the Balance-Sheet Data Office. 

• Owing to the absence of information on the evolution of equipment efficiency o

                                                           
3 See Appendix 1. 
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accounting data from the Balance-Sheet Data Office and the Perpetual Inventory Method. 

rvey) provides the total workforce (L) as 

We consider a constant rate of depreciation. 

• The annual survey of capital operating time (COT su

well as the shiftwork patterns at the firm level. This allows computation of a synthetic 

shiftwork indicator (NOP) which provides the capital operating time (DUE) when combined 

with working time according to the following relationship:4 

DUE NOP DHT= × . 

Despite its reliance on strong assumptions, this type of measure for the operating hours is widely 

used in empirical analyses (Cette and Bosworth, 1995). In our case, this formulation also allows 

estimation of the output elasticity of working time and shiftwork.5

 Working time at the firm level comes from

ble th e fro  the Acemo-Dares survey, suggesting 

eements that affect working time and overtime may not be 

taken into consideration. 

ombining these two sources yields an unbalanced panel of 386 industrial firms covering all 

tim ethod

ion 

tor utilization, we assume that output depends on the 

ervices of labour (SL) and of capital (SK). For the sake of sim

to assess the robustness of our results, we estimate a “flexible” Translog production function and 

                                                          

•  the COT survey. With regard to this latter 

variable, we cannot discount the possibility that it may be imperfectly measured. Aggregate 

results obtained from this variable resem os m

that it may also overestimate the decline in hours worked (Dares 2001). Indeed, firms are 

canvassed on a weekly basis: agr

C

or part of the period 1989–2001. Overall, 2.493 observations are present in our sample.6

 

4. The Estimated Relationships and the Es ation M ology 

4.1 Parameter estimates for the production funct

In keeping with the literature on fac

s plicity, and since it is commonly 

used in the literature and seems to provide a good approximation to the structure of a two-factor 

production function (Hamermesh, 1993), a Cobb-Douglas specification is assumed. In Section 6, 

 
4 See Appendix 1 for a definition of shiftwork. 
5 Retaining a synthetic measure for DUE does, in fact, lead to the problem of estimating the elasticity of hours of 
work, since DUE depends directly on this value. 
6 Descriptive statistics are not included here but are available from the authors.  
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test our specification against this more general specification. Therefore, we seek to estimate the 

following relationship: 

 , , ,
L K

i t i t i tY SL SKβ β= ×   (1) 

with Yi,t representing the real value added at factor cost for firm i at time t, and SLi,t and SKi,t the 

ervices supplied by labour and capital, ands  1Lβ ≤ ; 1Kβ ≤ . 

We further assume that the services provided by a factor depend upon its stock and duration of 

utilization, and can be expressed as: 

 DUESK K DUEα= ×   (2) 

and 

 DHTSL L DH= × Tα ,  (3) 

where L represents the workforce, K the stock of capital, DHT the working time, and DUE the 

capital operating time. We also assume that DUEα  and 1DHTα ≤ , allowing the possibility of 

decreasing returns in the use of capital and labour. 

Combining equations (2) and (3) yields: 

 , , , , ,
K DUEL K L DHT

i t i t i t i t i tY L K DHT DUE β ββ β β α ××= × × × .  (4) 

Note that in the context of a production function including factor utilization such as equation (4), 

the notion of constant returns to scale pertains only to stocks (Nadiri and Rosen, 1969). Hence, 

returns to scale will be constant if, holding factor utilization unchanged, doubling stocks of 

capital and labour yields twice the output.7

If we now assume that the capital operating time is the product of working time by a shiftwork 

indicator reflecting the development of shiftwork within the firm (NOP), we obtain: 

   (5) 

with 

, , , , ,
NOPL K DHT

i t i t i t i t i tY L K DHT NOP ββ β β= × × ×

DHT L DHT K DUE L Kβ β α β β β β= × + × ≤ + ; NOP K DUE Kβ β α β= × ≤ . 

After taking logs in equation (5) (lowercase variables indicate logs) we obtain: 

 ,, , , ,i t L i t K i t NOP i t DHT i ty l k nop dhtβ β β β= × + × + × + × .  (6) 

Drawing on the framework defined by Blundell and Bond (2000), the relationship to be 

estimated assumes the following form: 

                                                           
7 This assumption guarantees consistency when only factors stocks are considered, since then, the stability of factor 
utilization is implicitly assumed. 
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, , , , , ,(i t L i t K i t NOP i t DHT i t t s i i t i ty l k nop dht v m , )β β β β µ δ η= × + × + × + × + + + + + , (7) 

with tγ  a time-specific effect and sδ  a sector-specific effect. 

The error term consists of three effects: iη  is a firm-specific effect, ,i tν  is a first-order 

autoregressive shock ( | | 1ρ < ), and  captures measurement errors, if any: ,i tm

   (8) , , 1

, ,, ~ (0).
i t i t i t

i t i t

v v

e m MA

ρ −= × + ,e

Incorporating an autoregressive error term into the global error term thus yields a dynamic 

relation.8 Indeed, from equations (7) and (8), we can write: 

 
( ) ( ) ( )

( ) ( )
, , 1 , , 1 , , 1 , , 1

, , 1 1 , , ,( ) 1 ( (1 )

i t i t L i t i t K i t i t NOP i t i t

DHT i t i t t t s i i t i t i t

y y l l k k nop nop

dht dht e m m

ρ β ρ β ρ β ρ

β ρ γ ργ δ ρ η ρ ρ

− − − −

− −

= + − + − + −

+ − + − + − + − + + − 1)−

1−

  (9) 

or 

  (10) , 1 , 1 2 , 3 , 1 4 , 5 , 1 6 , 7 ,

* * *
8 , 9 , 1

i t i t i t i t i t i t i t i t

i t i t t s i it

y y l l k k nop nop

dht dht w

π π π π π π π

π π γ δ η
− − −

−

= + + + + + +

+ + + + + +

such that: 

 3 2 1π π π= − 5 4, 1π π π= − 7 6 1 , π π π= − 1and 9 8π π π= − . (11) 

It is important to note that the error term wit is an MA(0) process if there is no measurement 

error, and an MA(1) process if the variance of the error term is not nil. 
 

Therefore, estimation of the output elasticities requires several steps. We estimate first Eq. 

(10) and test whether the common factor restrictions (11) are binding. These restrictions can then 

be imposed using minimum distance to obtain the restricted parameter vector. 

4.2. The estimators 

Estimating a production function on firm-level data creates several problems when we allow 

for unobserved heterogeneity and examine the finite sample properties of the standard 

estimators. As Griliches and Mairesse (1997) emphasize, the OLS estimator provides plausible 

parameter estimates for the factors’ shares in the economy, and these are generally consistent 

with the assumption of constant returns to scale. In the presence of unobserved heterogeneity and 

                                                           
8 An identical formulation is obtained by assuming that global factor productivity follows a stationary process 
(Dupaigne 2002). 
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simultaneity, however, the performance of this estimator becomes somewhat less impressive.9 In 

the same vein, the Within estimator generates unsatisfactory and downwardly biased estimates, 

especially to the extent that the time dimension is small relative to the cross-section dimension, 

which is often the case in microeconomic panels (Anderson and Hsiao, 1981; Nickell, 1981). 
 

In this context, the GMMD, which eliminates unobserved individual effects by taking first 

differences, should yield more satisfactory results. This estimator can be described as follows. 

Assume that equation (9) satisfies the following conditions (Blundell and Bond, 2000): 

 (i)   ,[ ]i tE z 0χ ≠ , 

  where  and , , , ,, , ,i t i t i t i t i tz l k nop dht= , , ,, ,i i t i te mχ η= , respectively; 

 (ii)   , , , ,[ ] 0, [ ] [ ] 0, [ ] [ ] 0i i t i t i t i i t iE E v E m E v E mη η= = = = η =

0

0

0

0=

                                                          

  ∀ i = 1,…,N and ∀ t = 2,…,T; 

 (iii)  , ,[ ]i t i sE m m =

  ∀ i = 1,…,N and s ≠ t; 

 (iv)  , ,[ ]i t i sE v m =

  ∀ i = 1,…,N and ∀ t = 1,…,T; 

 (v)   , , , ,[ ] 0, [ ]i t j t i t j tE v v E m m= =

  ∀ i = 1,…,N and j ≠ i; 

 (vi)  1 , 1 , 1 , 1 ,[ ] [ ] [ ] [ ]i i t i i t i i t i i tE y v E y m E x v E x m= = =

  ∀ i = 1,…,N and ∀ t = 2,…,T. 

 

Condition (i) captures any eventual correlation between the explanatory variables and the 

individual effect, the autoregressive error term, and the measurement error. Condition (ii) 

establishes that the individual effect, the autoregressive term, and the measurement error have a 

zero mean and that the error terms are not correlated with the individual effect. Condition (iii) 

implies that the measurement error is not serially correlated. Condition (iv) assumes that the 

autoregressive error and the measurement error are not correlated. Condition (v) means that the 

 
9 For instance, Marschak and Andrews (1944) demonstrate that the exogenous variables cannot be considered 
independent and that the assumption of exogeneity no longer obtains if we consider the choice of production factors 
to be the result of profit maximization by the firm. 
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measurement errors and the autoregressive errors of two different firms are not correlated at time 

t. Finally, condition (vi) imposes that the initial conditions for the dependent variable and the 

explanatory variables are predetermined. 

Conditions (vi) yield the following moment conditions: 

,[ ]t s
i i tE x w− 0∆ = , 

where 

  
),,,,(

),...,(

),1(~

,,,,,,

,1,

sisisisisisi

stii
st

i

st
i

st
i

dhtnoplkyx
xxx

xx

=

=

=

−
−

−−

with  when  and  when . 2s ≥ , ~ (0i tw MA ) )

                                                          

3s ≤ , ~ (1i tw MA

Therefore, suitable lagged variables in levels serve as instruments in the first-difference 

equations. These conditions can be written more compactly as: 

 , (M1) [ ' ] 0i iE Z w∆ =

where  and  is the matrix of level instruments. )',...,( ,,, Tisiti www ∆∆=∆ iZ

The GMMD estimator is thus consistent when  and T is fixed. However, this estimator 

has weak finite sample properties. In particular, on the basis of Monte Carlo simulations, 

Arellano and Bond (1991), Kiviet (1995), Ziliak (1997), and Blundell and Bond (1998), among 

others, show that the GMMD estimator may be severely biased when (a) N is finite and T is 

small, (b) the number of moments is relatively large compared to the cross-section dimension, 

and (c) the instruments are weak in the sense of Staiger and Stock (1997). In addition, Alvarez 

and Arellano (2003) derive the asymptotic bias under more general assumptions. All these results 

pertain to a simple autoregressive model without explanatory variables. The inclusion of 

explanatory variables may reduce this bias. Similarly, when the explanatory variables (and the 

dependent variable) are highly persistent (possibly following a random walk), Blundell and Bond 

(2000) draw attention to the bias and imprecision of the GMMD estimator.

N →∞

10  

 
10 The difficulty here is to establish the size of the finite sample bias. A simple method consists of comparing the 
GMMD estimator with the OLS and Within estimators. In the framework of a first-order autoregressive model 
(without explanatory variables), Hsiao (1986) shows that the OLS estimator is biased upwards, while Anderson and 
Hsiao (1981) and Nickell (1981) demonstrate that the Within estimator is biased downwards (when the time 
dimension is small). In addition, a consistent estimator of the autoregressive term ( ρ ) should lie between these two 
limiting cases. Consequently, if GMMD estimates are near to, or below, Within estimates, we can conclude that the 
estimations are biased, because of weak instruments, for example. Sevestre and Trognon (1996) demonstrate that 
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The possibility that GMMD estimations might introduce a non-negligible bias into our study 

thus led us to choose the GMMS method, especially since Mairesse and Hall (1996) show that 

the GMMD estimator does not yield significantly better results in the case of a production 

function, while Blundell, Bond, and Windmeijer (2000) demonstrate that the GMMS estimator 

yields highly significant increases in precision and also substantially cuts the sampling bias in 

comparison with the GMMD estimator when the regressors are weakly exogenous and correlated 

with the individual effect.11

 
Indeed, in the case of strongly persistent series, Arellano and Bover (1995) and Blundell and 

Bond (1998, 2000) illustrate that it is preferable to use a GMMS estimator.12 This involves 

combining the GMMD estimator with additional conditions on the equations in levels. Assume 

that the following conditions hold: 

 (i) ; * * * *
, , , ,[ ] [ ] [ ] [ ]i t i i t i i t i i t iE k E l E nop E dhtη η η η∆ = ∆ = ∆ = ∆ = 0

0.

) )

 (ii)  *
,2[ ]i iE y η∆ =

The first condition establishes that the explanatory variables in first differences (except the 

dependent variable in lagged first differences) are not correlated with the individual effect. The 

second condition specifies that the dependent variable in first differences at t = 2 is not 

correlated with the individual effect. 
 

These assumptions imply the additional moment conditions: 

  (M2) *
, ,[( )(1, )] 0i i t i t sE w xη −+ ∆ =

with  when  and  when . 1=s , ~ (0i tw MA 2=s , ~ (1i tw MA

Therefore, suitable lagged first differences of the variables are used as instruments for the 

equations in levels (M2).  These moment conditions *
, ,[( ) ] 0i i t i t sE w xη −+ ∆ = , however, are valid 

under certain assumptions on the initial observations (Arellano and Bover 1995, Arellano, 

                                                                                                                                                                                           

tiw ,

these results also obtain when there are explanatory variables (except the lagged dependent variable) that are not 
correlated with the individual effect and are strictly exogenous with respect to . 
11 For the finite sample properties, see section 4.4. 
12 There are other method-of-moment-based estimators in the literature that may perform better than the GMMS 
estimator, as for instance the symmetrically normalized first-differenced GMM estimator developed by Alonso-
Borrego and Arellano (1999), the non-linear GMM estimator proposed by Ahn and Schmidt (1995, 1997). 
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2004).13 Specifically, the joint stationary of the and  processes is sufficient (but not 

necessary) for the validity of (M1).  

tiy , tix ,

 
As previously, the moment conditions can be written  

[ ] 0' =+
ii wZE     (M2) 

 

where  is the matrix of first-differenced instruments. +
iZ

Thus, it is possible to construct the (linear) GMMD estimator by considering the moment 

conditions (M1) and (M2), which simultaneously use the equations in levels and the equations in 

first differences. It should also be noted that only the lagged variables in first differences t – s are 

used in the equations in levels, since the other conditions are redundant with the moment 

conditions. The matrix of instruments for the GMMS estimator is thus defined as: 

0

0
iS

i
i

Z
Z

Z +

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

. 

The moment conditions become: 

[ ' ] 0S
i iE Z w+ = ,  

with  )',...,,,...,( ,,,, Tisitisii wwwww ∆∆=+

Using this type of estimator, Blundell and Bond (2000) obtain particularly satisfactory estimates 

of output elasticities for labour and capital in the framework of a Cobb-Douglas production 

function.  

Following their framework, we use the GMMS estimator as a benchmark. To fully appreciate the 

results this estimator yields and to compare them with those from other methods, OLS, Within, 

and GMMD results are also reported. 

4.3. Specification tests 

We perform two Wald tests for each estimation: the first is a minimum distance test of the 

non-linear common factor restrictions imposed on the restricted model and the second tests the 

null hypothesis of constant returns to scale. The validity of the moment conditions on the 

                                                           

)13 In particular, when the processes ,( i tx  and  are jointly stationary, then the moment conditions for the 
equations in levels obtain. This is a sufficient, but unnecessary, condition. In our study, these conditions obtain if the 

,i ty
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equations in levels can be tested using Sargan’s (1958) standard test for overidentification, the 

difference Sargan test, or the Hausman test comparing the results of the GMMD and GMMS 

estimations (Arellano and Bond, 1991). In our study, we use the first two tests. First, Arellano 

and Bond (1991) suggest using the statistics m1 and m2 to test the null hypothesis of no 

correlation between the first-order (second-order) residuals of the GMMD estimator (and the 

GMMS estimator). Under the null hypothesis that the moment conditions obtain, the Sargan 

statistic (denoted sdiff and ssy,, respectively, for the GMMD and GMMS estimators) is given by: 

21 ˆ ˆ' ' ~ (N
a

)s w ZW Z w m k
N

χ= ∆ ∆ −  under H0,

where  
1

1

1 ˆ ˆ'
N

N i i i
i

W Z w w Z
N

−

=

⎛
⎜= ∆ ∆
⎜
⎝ ⎠
∑ i

⎞
⎟
⎟

is the matrix of optimal weights,  are the 

estimation residuals from the second step, 

' ' '
1 2

ˆ ˆ ˆ ˆ' ( , ,..., )Nw w w w∆ = ∆ ∆ ∆

' ' '
1 2' ( , ,..., )NZ Z Z Z= , m is the number of moment 

conditions, and k is the number of estimated parameters. 

The validity of the moment conditions in the equations in levels is obtained by the difference 

Sargan test, defined as: 
2( )~sys diff sys diff

a

s s m mχ− −  

Furthermore, unlike Blundell and Bond (2000), who use the robust variances generated by the 

first step as robust variances of the estimator from the second step of the GMMD and GMMS 

estimations, we use a formula proposed by Windmeijer (2004) to correct the variances in the 

second step.14  

4.4. The finite sample properties of the different estimators 

This section presents the performance of the different estimators presented above for time and 

cross-section dimensions and for degrees of persistence of the explanatory variable and the 

dependent variable resembling those of the sample in our study. Indeed, the results in the 

literature obtain only asymptotically (see Alvarez and Arellano, 2003). In this respect, it may be 

                                                                                                                                                                                           
first moments of the explanatory variables (with the exception of the lagged dependent variable) are invariant with 
time (conditional on the time indexes). 
14 Windmeijer (2004) used Monte Carlo simulations to demonstrate that the asymptotic standard errors estimated by 
the two-step GMM technique can contain a significant downward bias in finite samples. 
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useful to compare the finite sample properties of the different estimators for N and T close to our 

sample15. To do so, we follow the procedure in Blundell, Bond, and Windmeijer (2000).  
 

Consider the following process with a single explanatory variable:  

ititiitit

itiititit

evxx
vxyy
+++=

+++=

− θτηρ
ηβα

1

 

where 

),0(),,0( 22
eitvit NeNv σσ →→ , and . ),0( 2

ηση Ni →

The initial observations are obtained from the second-order stationary conditions. The process 

 is potentially correlated with the firm-specific effects and with both the autoregressive 

shocks and the measurement errors 

)( itx

)0( 〈θ . Thus, for example, if 1→ρ , the process  is very 

persistent and the instruments are weak.  

)( itx

We assume that the following parameters are fixed in the Monte Carlo simulations16: 

1,1.0,25.0 22 ==−== vσσθτ η  and  16.02 =eσ

Thus, unlike Blundell, Bond, and Windmeijer (2000), we estimate the parameter β, as well as the 

two autoregressive coefficients, α and ρ. Seven cases are considered for the triplet ),,( βρα : 

(0.5, 0.5,1), (0.95, 0.5, 1), (0.5, 0.95, 1), (0.95, 0.95, 1), (0.99, 0.99, 1), (0.5, 0.99, 1), and (0.99, 

0.5, 1). The cross-section dimension is N = 200, and the results of the estimations are presented 

for T = 4, 8, and 12. For each case, the number of repetitions is set to 10.000 and the standard 

error and the square root of the mean squared error are computed for the OLS, Within, GMMD, 

and GMMS.17

 

Table 2 suggests the following results. When the and  processes are not too 

persistent (i.e., 

)( itx )( ity

ρ  and/or α = 0.50, case 1, 2, 3, 6, and 7), the OLS and GMMS estimators 

perform better than the Within and GMMD estimators. In particular, the GMMS estimator yields 

better results for the three parameters, the OLS estimator tending to be upwardly biased for the 

                                                           
15 To be consistent with our estimation method, we use the same set of instruments, namely the levels of the 
variables y, x for t – 2 to t – 4, and the growth rates of these variables at period  t – 1. 
16 We also conduct Monte-Carlo simulations for other parameter values. The main conclusions remain robust. They 
are not reported here but are available on request. 
17 Results for the GMM estimation in levels are not reported but are available from the authors. 
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parameter ρ  and downwardly biased for the parameter β. This better behaviour of the OLS and 

GMMD estimators is even more pronounced when T is small. It should be noted that the GMMD 

estimator is most sensitive to biases caused by weak instruments (when ρ  is close to 1) and has 

the highest standard errors and mean squared errors among the four estimators considered in the 

Monte Carlo simulations. This result can also be found in Blundell, Bond, and Windmeijer 

(2000). 
 

Table 2 : Monte-Carlo Simulation Results  

Coefficients OLS Within GMMD GMMS OLS Within GMMD GMMS OLS Within GMMD GMMS
 T = 12 T = 8 T = 4 
Case 1 : )1;5.0;5.0(),,( =βρα    
α  0.778 0.549 0.878 1.014 0.780 0.545 0.857 1.022 0.780 0.576 0.914 1.085 

Std-dev. 0.045 0.054 0.163 0.151 0.059 0.073 0.228 0.205 0.106 0.129 0.556 0.404 
RMSE 0.226 0.454 0.204 0.152 0.228 0.460 0.269 0.206 0.237 0.443 0.562 0.413 

ρ  0.818 0.392 0.471 0.527 0.817 0.302 0.457 0.529 0.812 -0.092 0.449 0.541 
Std-dev. 0.010 0.020 0.049 0.034 0.013 0.027 0.070 0.045 0.022 0.040 0.181 0.101 

RMSE 0.318 0.109 0.056 0.044 0.317 0.200 0.083 0.054 0.313 0.594 0.188 0.108 
β  0.761 0.343 0.491 0.500 0.761 0.240 0.485 0.500 0.762 -0.161 0.488 0.500 

Std-dev. 0.017 0.022 0.037 0.031 0.020 0.028 0.056 0.041 0.032 0.036 0.143 0.085 
RMSE 0.262 0.158 0.038 0.031 0.262 0.262 0.058 0.041 0.264 0.662 0.143 0.085 

Case 2: ( )1;5.0;95.0(),, =βρα  
α  0.685 0.617 0.833 1.067 0.689 0.658 0.877 1.087 0.644 0.717 1.016 1.134 

Std-dev. 0.050 0.056 0.174 0.153 0.064 0.080 0.219 0.206 0.112 0.142 0.578 0.420 
RMSE 0.318 0.386 0.242 0.167 0.317 0.351 0.251 0.224 0.373 0.317 0.579 0.441 

ρ  0.986 0.830 0.899 0.966 0.985 0.709 0.903 0.963 0.986 0.100 0.904 0.957 
Std-dev. 0.001 0.014 0.050 0.007 0.001 0.023 0.064 0.008 0.002 0.045 0.211 0.018 

RMSE 0.036 0.121 0.072 0.017 0.036 0.242 0.079 0.015 0.036 0.851 0.216 0.019 
β  0.761 0.343 0.491 0.500 0.761 0.240 0.486 0.500 0.762 -0.160 0.488 0.499 

Std-dev. 0.017 0.022 0.038 0.032 0.021 0.028 0.056 0.041 0.032 0.037 0.146 0.087 
RMSE 0.262 0.159 0.039 0.032 0.262 0.261 0.058 0.041 0.264 0.661 0.146 0.087 

Case 3 : )1;95.0;95.0(),,( =βρα  
α  0.831 0.877 0.681 1.095 0.832 0.878 0.596 1.093 0.833 0.730 0.365 1.097 

Std-dev. 0.029 0.044 0.347 0.065 0.037 0.069 0.508 0.086 0.067 0.135 1.690 0.204 
RMSE 0.171 0.131 0.471 0.115 0.172 0.140 0.649 0.126 0.180 0.301 1.805 0.225 

ρ  0.649 0.458 0.473 0.524 0.649 0.360 0.463 0.526 0.648 -0.090 0.447 0.525 
Std-dev. 0.012 0.018 0.041 0.025 0.016 0.025 0.056 0.033 0.028 0.040 0.150 0.070 

RMSE 0.150 0.046 0.049 0.035 0.150 0.142 0.068 0.042 0.151 0.592 0.159 0.074 
β  0.997 0.692 0.597 0.971 0.997 0.539 0.459 0.970 0.997 -0.017 0.251 0.965 

Std-dev. 0.002 0.019 0.267 0.029 0.002 0.026 0.354 0.043 0.004 0.041 0.900 0.125 
RMSE 0.047 0.258  0.442  0.036 0.047 0.412 0.606 0.047 0.047 0.968 1.139 0.126 
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Case 4 : )1;99.0;99.0(),,( =βρα  
α  0.871 1.105 0.719 1.061 0.832 1.159 0.711 1.061 0.721 0.903 0.785 1.053

Std-dev. 0.030 0.054 0.317 0.052 0.040 0.084 0.407 0.076 0.079 0.150 0.987 0.217
RMSE 0.132 0.118 0.424 0.081 0.173 0.179 0.499 0.098 0.290 0.178 1.010 0.223

ρ  0.963 0.884 0.930 0.955 0.965 0.765 0.918 0.955 0.970 0.093 0.853 0.955
Std-dev. 0.001 0.010 0.026 0.002 0.002 0.020 0.047 0.004 0.003 0.045 0.243 0.012

RMSE 0.013 0.066 0.032 0.006 0.015 0.186 0.057 0.006 0.020 0.858 0.262 0.013
β  0.997 0.692 0.599 0.971 0.997 0.540 0.456 0.970 0.997 -0.017 0.260 0.966

Std-dev. 0.002 0.018 0.268 0.029 0.002 0.026 0.356 0.042 0.004 0.040 0.893 0.127
RMSE 0.047 0.258 0.441 0.036 0.047 0.411 0.609 0.047 0.047 0.967 1.129 0.128

Case 5 : )1;99.0;99.0(),,( =βρα  
α  0.905 1.224 0.647 1.013 0.863 1.267 0.607 1.010 0.752 0.938 0.604 0.999

Std-dev. 0.024 0.060 0.402 0.036 0.035 0.089 0.545 0.056 0.077 0.149 1.579 0.187
RMSE 0.098 0.232 0.535 0.038 0.142 0.281 0.672 0.057 0.260 0.161 1.629 0.187

ρ   
0.991 

 
0.922 

 
0.983 

 
0.990 

 
0.992

 
0.803

 
0.974

 
0.990 

 
0.993

 
0.110 

 
0.897 

 
0.990

Std-dev. 0.000 0.009 0.016 0.000 0.000 0.018 0.037 0.000 0.000 0.045 0.247 0.002
RMSE 0.001 0.069 0.017 0.000 0.002 0.188 0.040 0.000 0.003 0.881 0.263 0.002

β  1.000 0.720 0.338 1.000 1.000 0.564 0.248 1.000 1.000 -0.003 0.088 0.998
Std-dev. 0.000 0.018 0.303 0.008 0.000 0.026 0.368 0.011 0.001 0.041 0.917 0.063

RMSE 0.010 0.271 0.719 0.012 0.010 0.426 0.828 0.015 0.010 0.994 1.287 0.063
Case 6 : )1;99.0;5.0(),,( =βρα  
α  0.837 0.914 0.631 1.024 0.837 0.917 0.579 1.024 0.837 0.746 0.378 1.029

Std-dev. 0.026 0.043 0.412 0.051 0.034 0.069 0.590 0.067 0.062 0.134 1.889 0.138
RMSE 0.164 0.096 0.411 0.051 0.166 0.108 0.724 0.071 0.175 0.288 1.989 0.141

ρ  0.597 0.460 0.489 0.507 0.597 0.364 0.483 0.507 0.597 -0.090 0.475 0.504
Std-dev. 0.013 0.017 0.031 0.024 0.016 0.025 0.045 0.032 0.030 0.040 0.122 0.064

RMSE 0.098 0.043 0.033 0.025 0.098 0.138 0.047 0.033 0.102 0.591 0.125 0.065
β  1.000 0.720 0.345 1.000 1.000 0.564 0.247 1.000 1.000 -0.004 0.074 1.000

Std-dev. 0.000 0.018 0.306 0.008 0.000 0.026 0.372 0.011 0.000 0.041 0.939 0.060
RMSE 0.010 0.270 0.713 0.012 0.010 0.426 0.830 0.015 0.010 0.994 1.311 0.061

Case 7 : )1;5.0;99.0(),,( =βρα   
α  0.731 0.638 0.841 1.048 0.715 0.680 0.880 1.070 0.644 0.734 1.016 1.127

Std-dev. 0.052 0.056 0.167 0.154 0.066 0.082 0.217 0.209 0.113 0.143 0.599 0.429
RMSE 0.274 0.366 0.231 0.161 0.293 0.330 0.248 0.221 0.374 0.302 0.599 0.448

ρ  0.997 0.876 0.950 0.992 0.997 0.751 0.950 0.992 0.997 0.118 0.949 0.991
Std-dev. 0.000 0.013 0.041 0.001 0.000 0.022 0.056 0.002 0.000 0.046 0.204 0.003

RMSE 0.007 0.115 0.057 0.003 0.007 0.240 0.069 0.003 0.007 0.874 0.208 0.004
β  0.761 0.342 0.491 0.5000 0.762 0.240 0.486 0.5000 0.762 -0.160 0.490 0.499

Std-dev. 0.017 0.022 0.037 0.031 0.020 0.027 0.056 0.041 0.032 0.037 0.143 0.086
RMSE 0.262 0.159 0.038 0.031 0.262 0.262 0.058 0.041 0.264 0.661 0.144 0.086

Note : Std-dev. and RMSE stand for standard deviation and root mean squared errors. 
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When both processes are highly persistent (i.e., ρ  and α = 0.95, 0.99, cases 4 and 5), the GMMS 

estimator  always perform better in terms of point inference, standard error, and mean squared 

error. This remains the case as T decreases (T = 4 or 8). 

Thus, the results reveal that inference on the parameter β is generally very sensitive to the 

persistence properties of the process ( ). In particular, the standard error and the mean squared 

error are larger than for the other parameters. For the other two parameters, there is a non-

negligible bias, depending on the case considered and the estimator used. At the same time, the 

precision (standard error) increases with the time dimension.  

itx

 
These results of the Monte Carlo simulations lead us to prefer the GMMS estimator. With this 

method, however, we cannot rule out the possibility that, at best, the parameter β is upwardly 

biased.  

 

5. Results 

5.1. Constant returns to scale and elasticity of capital near 0.3 in the case of a two-factor 

production function 

We first estimate a production function containing only stocks of factors. For the GMMD and 

GMMS estimators, the levels of the variables y, k, and l for t – 3 to t – 5, and the growth rates for 

t – 2, were used as instruments18. Overall, this leads to reduce the sample size to 949 

observations.19 For all models, the test for dynamic representation is statistically accepted at 

standard significance level (Table 3). 
 

These initial results suggest an autoregressive coefficient that is upwardly biased for the OLS 

estimator and downwardly biased for the Within estimator (see Appendix 2). This is consistent 

with standard results in the literature and our Monte-Carlo simulations. As to the GMMD 

estimator, we obtain a very small and statistically insignificant autoregressive coefficient. 
 

In keeping with the usual results obtained with OLS and Within estimators, we find output 

elasticities of labour and capital that are plausible (with regard to their share in the economy) and 

                                                           
18 We also conduct estimations when the instruments are lagged levels at t – 2 to t – 4 and growth rates at t – 1, are 
presented in the Appendix 2. However, the difference Sargan test rejects the validity of these instruments.  
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consistent with the assumption of constant returns to scale (Table 3). The GMMD estimator 

yields an output elasticity of capital that is near zero and not significant. This result is similar to 

those in Mairesse and Hall (1996). 

 

Table 3 : Cobb-Douglas Production Function with 2 Factors 

 OLS Within GMMD* GMMS* 

Lβ  0.650 
(0.057) 

0.658 
(0.071) 

0.436 
(0.221) 

0.466 
(0.152) 

Kβ  0.307 
(0.048) 

0.203 
(0.065) 

-0.111 
(0.196) 

0.422 
(0.163) 

Constant returns to scale 

Lβ  0.679 
(0.046) 

0.726 
(0.056) 

** 0.720 
(0.126) 

Kβ  0.321 0.274  0.280 

Note : Year and sectoral dummies included in all models 
* Corrected two-step standard errors in parentheses (Windmeijer, 2004) 
 ** Results are not reported when the Wald test of the constant returns to scale 
hypothesis is not accepted in the restricted models. 

 

The results from the GMMD estimation lead us to question the nature of the instruments. In 

particular, one condition for the parameters to be correctly identified is that the instruments be 

correlated with the endogenous variable in first differences. When that is not the case, the 

instruments are weak in the sense of Staiger and Watson (1997), and the GMMD estimator is not 

reliable.20 In addition, Blundell and Bond (2000) demonstrate that when the series are strongly 

persistent, the instruments used to estimate the GMMD are weak and this estimator is not 

appropriate. 
 

To pursue the analysis of our results more deeply, we examine the persistence properties of 

the various series and test the unit root hypothesis using OLS regressions. This choice is 

motivated by the work of Bond, Nauges, and Windmeijer (2002) in which robust micro panel 

                                                                                                                                                                                           
19 Thus, one limitation of our study may be that the cross-section dimension is relatively small, while the time 
dimension covers the entire period of the estimation for some firms.  
20 The intuition is as follows. If we consider the extreme case of a random walk, there is no correlation between the 
variables in first differences and the lagged levels. It follows that the autoregressive parameter is not identified, the 
rank condition is not satisfied, and the instruments do not add any information. 
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unit root tests are conducted, based on (one-tailed) t-tests from OLS regressions. Our results 

indicate that the series are strongly persistent but fail to show a unit root (Table 4) 21. 

 
Table 4 : Persistence and Unit Root Tests 

 Yt Lt Kt NOPt Dht 
Lagged variable * 0.99 

(0.003) 
0.99 

(0.002) 
0.99 
(0.02) 

0.90 
(0.01) 

0.54 
(0.03) 

t-test  ** 0.04 0.05 0.00 0.00 0.00 

* Results are based on the following OLS regressions: , 1 ,it i t s t i i tZ Zα µ η ν ε−= + + + + , 

with , , , ,Z Y K L Nop Dht=  (respectively) and sµ  are sectoral dummies (level NAF 
16), and tη are time dummies;  
**  t-test (p-value) : 0 :H 1α = and 1 :H 1α <  (see Bond, Nauges, and  Windmeijer, 
2002). 

 

Therefore, it appears more appropriate to use the GMMS estimator, which also yields a more 

satisfactory estimate of the autoregressive parameter22. The GMMS estimator yields elasticities 

for labour and capital that are statistically significant, on the order of 0.47 and 0.42, respectively 

(Table 4). These output elasticities are comparable with those obtained by Blundell and Bond 

(2000) using data on U.S. firms. The largest standard errors reported hereafter are those 

generated by the correction to the variance using Windmeijer’s (2004) method. Since the 

assumption of constant returns to scale is accepted, we perform a constrained estimation. It 

yields elasticities for labour and capital that are slightly different, the output elasticity of labour 

being close to 0.7 and that of capital, 0.3. These results are equivalent to those obtained from the 

OLS and Within estimations. 

5.2. Shiftwork and capital: Identical output elasticities within the production function? 

We subsequently estimate a production function integrating shiftwork and working time. For 

the GMMD and GMMS estimators, the levels of the variables y, k, l, and nop for t – 3 to t – 5, 

                                                           
21 However, Bond, Nauges, and Windmeijer (2002) note that the strength of this test decreases as the variance of 
the individual effect increases. It therefore becomes more difficult to reject H0. 
22 The dependent variable’s high degree of persistence can be mitigated by replacing the value added with the value 
added per unit of labour (the autocorrelation coefficient is 0.93). The results, however, are equivalent and are not 
presented. They can be obtained from the authors. 
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and the growth rates for t – 2 are used as instruments.23 Given the uncertainty surrounding 

measurements of the working time, we opt not to retain it as an instrument. As previously, the 

test for dynamic representation is statistically accepted for all estimations (Appendix 2). Table 4 

presents the results for the various estimations. 
 

Incorporating shiftwork and working time into the production function does not modify the 

output elasticities of labour or capital for the OLS, Within, and GMMD estimators. Conversely, 

for the GMMS estimator, the elasticity of labour reaches 0.69 and that of capital 0.35 (Table 5). 
 

The working time proves disappointing, because, regardless of the estimator, its output 

elasticity is particularly small—it is only significant for the Within estimator. This result appears 

to be attributable to the uncertainty surrounding its measurement. In effect, this variable does not 

take into account potential redefinitions of the time worked resulting from the substantial 

reduction in working time starting in 1997, or for agreements to annualize time worked, or for 

overtime. The unique profile of this variable, notably its limited variance and the existence of 

accumulation points, also may justify our results (Figure 1). 

 

Figure 1 
Distribution of Working Time 

 

 

                                                           
23 Results for y, k, l, and nop, when the instruments are lagged levels at t – 2 to t – 4 and growth rates at t – 1 are 
presented in Appendix 2. 
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Note : 949 observations. The mean and the standard deviation are 38.30 and 
2.16, respectively. 

 

 

Incorporating shiftwork appears more promising. The output elasticity of shiftwork is 

significant for all estimators except the GMMD estimator. In the case of the GMMS estimator, 

the value of this elasticity is near that of capital, and we cannot statistically preclude the 

possibility that they are identical. This would mean that an increase in shiftwork has the same 

impact on production as an increase in the stock of capital. 
 

As in the case of the two-factor production function, the assumption of constant returns to 

scale is accepted for all estimators except the GMMD. The imposition of constant returns 

slightly modifies the results of the GMMS estimator, since the elasticity of the working time 

rises (from 0.28 to 0.46). As to the elasticity of shiftwork, though it increases slightly (from 0.30 

to 0.52), it remains statistically equivalent to that of capital. 

 

Table 5 : Production Function with Capital Operating Time and Working Time 

 OLS Within GMMD* GMMS* 
Lβ  0.649 

(0.056) 
0.653 

(0.071) 
0.481 

(0.208) 
0.686 

(0.122) 
Kβ  0.301 

(0.048) 
0.204 

(0.065) 
-0.105 
(0.19) 

0.344 
(0.108) 

DHTβ  0.148 
(0.096) 

0.283 
(0.104) 

0.185 
(0.344) 

0.275 
(0.231) 

NOPβ  0.112 
(0.038) 

0.135 
(0.042) 

0.024 
(0.146) 

0.301 
(0.145) 

Kβ  = NOPβ  
[p-value] 

9.11 
[0.00] 

0.76 
[0.38] 

0.37 
[0.54] 

0.05 
[0.83] 

Constant returns to scale 
Lβ  0.685 

(0.045) 
0.724 

(0.055) 
** 0.655 

(0.154) 
Kβ  0.315 0.276  0.345 

DHTβ  0.155 
(0.097) 

0.296 
(0.104) 

 0.459 
(0.215) 

NOPβ  0.107 
(0.039) 

0.129 
(0.042) 

 0.519 
(0.134) 

Kβ  = NOPβ  
[p-value] 

11.45 
[0.00] 

4.24 
[0.04] 

 1.06 
[0.30] 

Note : Year and sectoral dummies included in all models 
* Corrected two-step standard errors in parentheses (Windmeijer, 2004) 
 ** Results are not reported when the Wald test of the constant returns to scale 
hypothesis is not accepted in the restricted models. 
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Since taking hours of work into consideration leads to the counterintuitive result of output 

elasticities that are statistically insignificant and lower than those of labour alone—in contrast to 

the results in the literature (Hamermesh 1993)—we proceed to new estimations without this 

variable. 
 

Estimating a Cobb-Douglas type production function with three factors (capital, labour, and 

shiftwork) yields results similar to the foregoing for all estimators. In the case of the GMMS 

estimator, we find an elasticity of shiftwork that is statistically equivalent to that of capital 

(Table 6). To test the robustness of this result, the estimations were performed using alternative 

indicators of the use of shiftwork. Again, we find equality between the output elasticity of capital 

and of shiftwork (Table 6). 

 

Table 6 : Cobb-Douglas Production Function with Shiftwork 

 
 

OLS 
 

Within 
 

GMMD*
 

GMMS*
Shiftwork indicator 

 
    Arithmetic Harmonic 

Lβ  0.64 
(0.06) 

0.65 
(0.07) 

0.48 
(0.21) 

0.67 
(0.13) 

0.67 
(0.13) 

0.67 
(0.12) 

Kβ  0.30 
(0.05) 

0.20 
(0.07) 

-0.11 
(0.18) 

0.34 
(0.11) 

0.34 
(0.11) 

0.32 
(0.10) 

NOPβ  0.11 
(0.04) 

0.13 
(0.04) 

0.02 
(0.15) 

0.30 
(0.14) 

0.29 
(0.13) 

0.40 
(0.22) 

Kβ  = NOPβ  
[p-value] 

9.37 
[0.00] 

0.73 
[0.39] 

0.37 
[0.54] 

0.04 
[0.84] 

0.09 
[0.76] 

0.11 
[0.74] 

Constant returns to scale 

Lβ  0.68 
(0.05) 

0.72 
(0.06) 

** 0.62 
(0.14) 

0.62 
(0.14) 

0.61 
(0.10) 

Kβ  0.319 0.28  0.38 0.38 0.39 
NOPβ  0.11 

(0.04) 
0.13 
(0.04) 

 0.53 
(0.12) 

0.51 
(0.11) 

0.70 
(0.20) 

Kβ  = NOPβ  
[p-value] 

11.95 
[0.00] 

4.46 
[0.03] 

 0.68 
[0.41] 

0.60 
[0.44] 

1.69 
[0.19] 

Note : Year and sectoral dummies included in all models 
* Corrected two-step standard errors in parentheses (Windmeijer, 2004) 
 ** Results are not reported when the Wald test of the constant returns to scale hypothesis is 
not accepted in the restricted models. 
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*** Wald Test for the null hypothesis  H0 : Kβ  = NOPβ , p-value in brackets. 

 

 

Finally, as we show, the GMMD estimator behaves poorly in our sample due to the 

persistence of each factor and the measurement errors. Therefore, since the GMMS estimator is a 

linear combination of the two-stage least squares GMMS and level GMM estimators – the latter 

using all first-differenced instruments –  it also means that the equations in levels are much more 

informative than the first-differenced equations. In this respect, a simpler GMM levels estimator 

will yield similar results.24  

5.3. The contribution of operating hours and hours of work in the production function 

The statistical contribution of operating hours and hours of work can be evaluated with the 

test proposed by Bond, Bowsher, and Windmeijer (2001), which compares the value of the 

function to be minimized to obtain the GMMS estimator under the null hypothesis ( )2
ˆCβ  and 

under the alternative hypothesis ( )2β̂ . 

 

Under the null hypothesis, and for r constraints of the type ( ) 0r β = , the computed statistic 

( ), which follows a Chi-squared distribution with r degrees of freedom, is given by RUD

( ) ( )( )2 2
ˆ ˆC

RUD N J Jβ β= −  

with ( ) ( )( ) ( )( )1

1 1

1 1, ,
i N i N

i i i N i i i
i i

J Z y m X W Z y m X
N N

β β
= =

−

= =

′⎡ ⎤ ⎡ ⎤
′ ′= − −⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
∑ ∑ β . 

The results (Table 6) confirm that the measure of the hours of work we use does not 

contribute any information statistically, since we accept the null hypothesis (H0) 0DHTβ = , unlike 

in the case of the intensity of the use of shiftwork, for which we reject the null hypothesis 

0NOPβ = . 

 

 

 

                                                           
24 We estimate the models using a GMM levels estimator. Results are close to the GMMS estimators and thus our 
conclusions remain valid.  Results are not reported here but are available on request. 
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Table 7 : Contribution of Operating Hours and Working Time in the Production Function 

 Stat p-value 
Working Time 
Four factors (K, L, NOP, DHT) 
vs. 
Three factors (K,L,NOP) 
H0 : 0DHTβ =  

 
0.58 

 
0.447 

Synthetic Shiftwork Indicator 
Four factors (K,L,NOP) 
vs. 
Three factors (K,L) 
H0 : 0NOPβ =  

 
 

4.39 
 

 
 

0.036 

Note: “Stat” indicates the statistic developed by Bond, Bowsher, and Windmeijer 
(2001). It follows a Chi-squared distribution with one degree of freedom under the null 
hypothesis of no contribution of the hours of work or shiftwork.  Estimates are obtained 
by GMMS.  

 

 

5.4. Comparison with previous studies 

A comparison of Table 1 with our results reveals that considering shiftwork substantially 

improves estimates of factors’ share in the economy. The corresponding coefficients are, for the 

most part, significant and allow estimation of marginal productivities of capital and labour that 

are more significant and more consistent with these factors’ compensation in the value added. 

The assumption of constant returns to scale with respect to stocks of capital and labour cannot be 

rejected. 
 

In particular, studies using French data tend to underestimate the share of capital in the 

economy and to overestimate the share of labour in value added, especially when firm-level data 

are not considered. A further debate surrounding the estimation of production functions pertains 

to the relative productivity of the workforce and working time. The values of these parameters 

come into play in discussions of potential productivity gains associated with changes to the 

length of the workweek. They can also be used to evaluate the feasibility of a firm’s practice of 
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perennially drawing on overtime. Empirical results are strongly divided on this matter. Various 

studies (Feldstein (1967) on British data, or Craine (1973) on U.S. data) obtain output elasticities 

with respect to individual hours of work that exceed unity. Others have found less dramatic 

results, either because they differentiate between behaviours according to the sector of the 

economy (Leslie and Wise (1980) for the United Kingdom), or because they introduce cyclical 

indicators or incorporate the productive services of capital (Hart and McGregor 1988, Anxo and 

Bigsten1989). Under these conditions, our results show that omitting the capital operating time 

may introduce a bias into the results. Indeed, for a given shiftwork organization, increasing the 

hours worked leads to a rise in the capital operating time, which will allow an increase in 

production. If this effect is not considered, the output elasticity of working time may be 

overestimated. Anxo and Bigsten (1989), lacking a measure of the capital operating time, 

propose estimating a production function for Swedish industry that integrates capital, the 

workforce, the working time, and a capacity utilization rate. They observe a negative output 

elasticity of the capacity utilization rate. This paradoxical result—since they retained this 

indicator a priori as a business cycle measure of the gap between the supply of, and demand for, 

goods—could be explained if the most productive equipment is used first, and the remainder 

only brought into service to deal with substantial recoveries in economic activity. This could be 

attributable to the existence of several generations of equipment or, more generally, by 

heterogeneity of capital. In this event, we would be observing a “saturation effect,” explained by 

Cette et al. (1991), as full production capacity is approached. Since we have data on the capital 

operating time, we obtain, following Hart and McGregor (1988), identical output elasticities of 

capital and its operating hours. 

 

6. Robustness Analysis 

In this section, we discuss the specification of the production function. We consider a flexible 

translog production function and analyze to what extent our results are driven by the Cobb-

Douglas formulation of the production mix. The Translog specification is retained since it can be 

considered as a second order approximation of any twice differentiable technology (Fuss, 

McFadden, and Mundlack, 1978; Chambers, 1988) and the Cobb-Douglas production function is 

a restricted case of the Translog specification. The results in this section are discussed in details 

in Heyer, Pelgrin, and Sylvain (2004). 
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6.1. Estimation of a Translog production function 

We consider the following relation (Christensen, Jorgenson, and Lau, 1971): 

( ) ( ) ( ) ( )
4 4 4

, , ,
1 1 1

1ln ln ln ln ( )
2

j j k
j j k

i t i it jk it it t s i i t i t
j j k

y x x x vβ β µ δ η
= = =

= = =

= + + + + + +∑ ∑∑ m

,e

  (12) 

where x1 = L represents the workforce, x2 =K, the stock of capital, x3 =DUE the capital operating 

time, x4 =DHT the working time, µt a time effect capturing an exogenous Hicksian technical 

progress, and δs is an individual sectoral effect.  

 

We also assume that  

, , 1

, ,, ~ (0).
i t i t i t

i t i t

v v

e m MA

ρ −= × +
   (13) 

Incorporating an autoregressive error term into the global error term thus yields a dynamic 

relation. Finally, in order to avoid multicolinearity from the cross-terms, we assume that the 

logarithms of the factors are centered (Aiken and West, 1991). Therefore, from equations (12) 

and (13), we can write: 

( ) ( ) ( )

(
( )

4

, , 1 , 1
1

4 4

, 1 , 1
1 1

1

, 1

ln ln

1               
2

               ( ) 1 ( (1 )
               )
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j j

i t i t i it i t
i

j k
j k j k

kj it it i t i t
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t t s i

it it i t

y y x x

x x x x

e m m

ρ β ρ

β ρ )
γ ργ δ ρ η ρ

ρ

=

− −
=

= =

− −
= =

−

−

= + −

+ −

+ − + − + −

+ + −

∑

∑∑  (14) 

with ( )lnj j j
it itx x x= − ( )1 ln it

i t
x x

nobs
= ∑∑,  , and  

1

i N

i
i

nobs t
=

=

= ∑ ;  

where ti, is the number of successive years of presence of the firm i in the sample. 

In order to estimate (14), we need to take into account two limitations of the Translog 

specification (Diewert, 1971). First, this representation is only valid at the unknown 

approximation point or its neighborhood. Generally, the median or average point is used in 

empirical studies. Following Biscourp et al. (2003) and Chambers (1988), we report here the 

distribution of the different elasticities (output and substitution elasticities) as well as the median 
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estimates. Second, while Cobb-Douglas or CES production functions satisfy regularity 

conditions (positive marginal productivities, decreasing returns to scale for each factor, 

convexity of the isoquants, and positive owned-elasticities), this might not be the case for the 

Translog specification. There is a trade-off between the flexibility of the functional form and the 

respect of the validity conditions. Therefore, we impose, when necessary, these conditions and 

follow the approaches developed by Lau (1978), Gallant and Golub (1984) and Ryan and Wales 

(2000).  
 

Results are presented in Tables 8a and 8b.25 They show that the median output elasticities of 

factors are close to the coefficients of the Cobb-Douglas production function, except for the 

elasticity of the shiftwork variable, 0.19, which is less than the capital elasticity, 0.30, and the 

elasticity of the working time which is largely inferior to the output elasticity of labour.  At the 

same time, the partial elasticities of substitution provide evidence that pairwise production’s 

factors are substitutable: ceteris paribus, an increase of a factor’s price leads to a decrease of this 

factor in the input mix and thus an increase of other factors. This confirms that the development 

of shiftwork is a credible alternative to investment. Moreover, if we assume that the adjustment 

of shiftwork is more immediate than the adjustment of capital, then shiftwork will allow more 

flexibility in the production process during unexpected changes of factors cost. Nevertheless, as 

we point out in Section 5, the substitutability of the couple (labour, working time) should be 

interpreted with caution due to the imprecision and the measurement issues of the hours of work. 

 

                                                           
25 Results for the GMMS estimator are reported in Table 8. Estimates are presented in Appendix A2.6. Other results 
are available on request.  
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Table 8a : Distribution of Output Elasticities – 4-factors Translog Production Function. 

 L K NOP DH 

95% 0.75 0.42 0.28 0.35 

75% 0.67 0.36 0.23 0.30 

50% 0.62 0.30 0.19 0.25 

25% 0.57 0.26 0.14 0.19 

5% 0.50 0.21 0.10 0.13 

  

 Table 8b : Distribution of Partial Elasticities of Substitution 

 K,L L,NOP L,DHT K,NOP K,DHT N,DHT 

95% 3.4 0.8 0.2 3.7 1.6 1.1 
75% 2.8 0.7 0.1 2.6 1.4 1.0 
50% 2.6 0.5 0.0 2.1 1.3 0.9 
25% 2.5 0.2 -0.1 1.9 1.2 0.9 
5% 2.3 -0.7 -0.4 1.6 1.1 0.8 

Note : Under the regularity conditions, 945 observations are available.  

 

As previously, we proceed to new estimations without the hours of work. Results show that 

the working time does not affect our results – elasticities and qualitative interpretations are the 

same. Note, however, that the dynamic representation is now accepted while it was statistically 

rejected with the four-factor specification.26

6.2. Cobb-Douglas or Translog? 

Since the Cobb-Douglas production function can be seen as a constrained version of the 

Translog specification, we test to what extent our results are robust to the functional form by 

using the methodology proposed by Bond, Bowsher, and Windmeijer (2001).27  Specifically, we 

compare the constrained two-step GMMS estimator (Cobb-Douglas technology) and the 

unconstrained one (Translog technology). Results reported in Table 10 show that the null 

hypothesis of a Cobb-Douglas production function is not rejected at standard significance level, 

e.g. the factors of production are substitutable and elasticities of substitution are unitary. 

Interestingly, the Cobb-Douglas formulation is ruled out if durations of factor utilization are not 

taken into consideration in the specification: the p-values are less than 0.01 in both cases – the 

                                                           
26 Results are not reported here but are available on request. 
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unconstrained and the constrained estimations. The same result emerges when considering a 

static representation of the production function. Except when we impose the regularity condition 

for the three-factor model, the null hypothesis of a Cobb-Douglas production function is not 

accepted at standard levels. Therefore, our empirical evidence suggest that a Cobb-Douglas 

production function is a correct functional form of the technology in our sample, especially when 

studying the contribution of durations of factor utilization. 

 

Table 9: Translog versus Cobb-Douglas production function 

  Unconstrained Estimation Regularity Conditions 
Dynamic Representation: 

Four factors (K,L, NOP, DHT) Stat 14.40 12.90 
 p-value 0.16 0.23 

Three factors (K,L, NOP) Stat 6.40 5.10 
 p-value 0.38 0.53 

Two factors (K,L) Stat 17.70 15.90 
 p-value < 0.01 < 0.01 

Static Representation: 
Three factors (K,L,NOP) Stat 12.00 8.50 

 p-value 0.06 0.20 
Two factors (K,L) Stat 14.00 13.40 

 p-value < 0.01 < 0.01 
Note: The degrees of freedom of the Chi-Squared is 10, 6 and 3, respectively, for the four-, three-, and 
two-factor models. 

 
 

7. Conclusion 

Our analysis shows that shiftwork has a significant impact on wealth creation, and the output 

elasticity of is equivalent to that of capital. All else being equal, and assuming a homogeneous 

capital stock, there is full equivalence between increasing the capital stock or developing 

shiftwork. Moreover, these results are obtained using an estimation method (the GMMS) that 

appears more efficient than traditional methods (OLS, Within, and the GMMD), which bolsters 

our conclusion. At the same time, GMMD estimations suggest that the results obtained depend 

essentially on account being taken of the equations in levels, and thus of the instruments in first 

differences. Conversely, we are unable to identify a truly significant impact of working time, 

                                                                                                                                                                                           
27 See Section 5.3. 
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probably because of measurement errors on that variable and its limited variance. In addition, we 

show that our results are robust to the choice of the functional form. Interestingly, the Cobb-

Douglas production function is the true technology if we take into account factor utilization 

whereas the Translog production function matters if labour and capital are the unique inputs.   
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Appendix 1: Data used and construction of the variables 

A1.1 Shiftwork and Capital Operating Time 

Shiftwork is a way of working in relays in which several teams succeed one another in time, 

with overlap either nonexistent or limited to conveying information on the status of the work. 

Traditionally, we distinguish between: 

- discontinuous work (2X8), which permits extended operation during the day, but retains nights 

and weekends as downtime; 

- semi-continuous work (3x8), which permits work to be uninterrupted except on weekends; 

- continuous work, organized without any stops at all, generally with 4 or 5 teams (4x8 or 5x8). 

Thus, all else being equal, the more extensive the use of shifts, the longer the capital operating 

time will be. The operating time for a given piece of equipment will be doubled when two 

successive teams use it (compared to the situation without alternation), tripled when there are 

three teams, and so on. 

Measures of the capital operating time (DUE) are based on the shiftwork patterns and the 

hours of work. They usually correspond to the product of a synthetic shiftwork indicator (NOP) 

times the average working time (DHT): 

 . DUE NOP DHT= ×

 

A1.2 Construction of the variables 

The value added at factor cost at current price (VACF_VAL) is computed using data from 

the Balance-Sheet Data Office with the following relationship: 

VACF_VAL = FL + FM + FN – ( FS + FT + FU + FV + FW ) + FO – FX, 

where FL is net sales; FM, stored production; FN, capitalized production; FS, purchases of 

goods; FT, variation in the stock of goods; FU, purchases of commodities and other supplies; 

FV, variation in the stock of commodities and other supplies; FW, other purchases and external 

expenses; FO, operating subsidies; FX, sales and income taxes and related payments. 

The real value added (Y) is then obtained by deflating with a sectoral price index (level 

naf36).  
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Owing to the absence of information on the equipment’s efficiency over time, the real stock 

of capital (K) computed at the firm level is a gross stock of capital. Because of the nature of the 

available data, this is close to the entirety of all tangible assets. It is calculated using the 

following relationship: 

( ) 11t t tK I Kδ −= + −  

where δ represents the constant rate of depreciation, fixed at 5 per cent (Sylvain 2003a). 

The initial volume of capital is computed under the assumption that it was all acquired on the 

initial date, with an adjustment for its age at that date. The age of capital is determined from the 

share of amortized capital, assuming that the amortization is linear. The time series of 

investments and the initial stock of capital are deflated by sectoral price indexes for investment 

(level NAF36). 

The total workforce (L) and the working time (DHT) are taken from the annual survey of 

capital operating time. 

The synthetic shiftwork indicator (NOP) is computed from information on the shiftwork 

patterns supplied by the annual survey of capital operating time. For each firm, this indicator is 

defined such that: 
n

n it
n

n
n it

n

n p
NOP

p

α

α

× ×
=

×

∑
∑

, 

where n is the number of teams; , the proportion of the workforce working in n teams; and n
ip nα , 

constant coefficients. 

Given the available data, we assume that discontinuous, semi-continuous, and continuous work 

correspond to two, three, and five teams. 

The retained coefficients  yield the usual measures for the intensity of the use of shiftwork 

(Table A). The harmonic approach defines the intensity of the use of shiftwork as the harmonic 

mean of the number of teams, and the arithmetic approach as the arithmetic mean of the number 

of teams. The econometric indicator used in this study retains the coefficients  generated by 

econometric estimations on individual data (Sylvain, 2003b). 

nα

nα
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Table A : Shiftwork Indicators 

 Econometric 

Approach * 

Harmonic 

Approach 

Arithmetic 

Approach 

1α  1 1 1 

2α  0.95 0.50 1 

3α  0.91 0.33 1 

5α  0.86 0.20 1 

 Source : Sylvain (2003b) 
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Appendix 2 : Results of Estimations 
 

A2.1 : Standard Cobb-Douglas Production Function with Capital and Labour 

 Ols2 Within2
GMMD2

(t-2/t-4) 
GMMD2

(t-3/t-5) 
GMMS2

(t-2/t-4) 
GMMS2

(t-3/t-5) 
1ty −  0.912 0.513 0.039 0.118 0.787 0.875 

 (0.018) (0.044) (0.11) (0.12) (0.078) (0.073) 

tl  0.595 0.653 0.475 0.412 0.666 0.369 
 (0.066) (0.069) (0.181 (0.23 (0.193 (0.133 

1tl −  -0.531 -0.284 0.151 -0.005 -0.409 -0.277 
 (0.065) (0.079) (0.210) (0.185) (0.179) (0.147) 

tk  0.202 0.235 -0.069 -0.128 0.374 0.296 
 (0.072) (0.068) (0.219) (0.209) (0.300) (0.186) 

1tk −  -0.176 -0.201 -0.098 0.094 -0.398 -0.263 
 (0.071) (0.078) (0.240) (0.183) (0.286) (0.171) 

m11 -1.40 3.33 -1.13 -1.64 -5.70 -5.46 
p-value (0.161) (0.001) (0.261) (0101) (0.00) (0.00) 

m21 -0.77 -0.12 -1.16 -0.9 -0.76 -0.55 
p-value (0.442) (0.907) (0.248) (0.370) (0.448) (0.584) 

Comfac1 5.53 1.85 0.74 0.29 4.68 1.15 
p-value (0.063) (0.396) (0.692) (0.866) (0.096) (0.563) 
Sargan1   72.24 64.96 111.28 85.17 
p-value   (0.601) (0.738) (0.271) (0.855) 
Dsar1     39.04 20.21 

p-value     (0.063) (0.822) 
Dynamic Representation 

ρ  0.907 0.518 0.03 0.126 0.768 0.878 
 (0.017) (0.044) (0.105) (0.120) (0.062) (0.069) 

Lβ  0.65 0.658 0.48 0.436 0.884 0.466 
 (0.057) (0.071) (0.169) (0.221) (0.137) (0.152) 

Kβ  0.307 0.203 -0.084 -0.111 0.171 0.422 
 (0.048) (0.065) (0.149) (0.196) (0.164) (0.163) 

Crs1 0.94 2.99 11.71 6.43 0.2 0.53 
p-value (0.331) (0.084) (0.001) (0.011) (0.655) (0.466) 

Constrained Estimation 1L Kβ β+ =  
ρ  0.901 0.508 0.105 0.069 0.602 0.649 
 (0.016) (0.043) (0.105) (0.113) (0.129) (0.121) 

Lβ  0.679 0.726 0.859 0.89 0.843 0.72 
 (0.046) (0.056) (0.155) (0.164) (0.134) (0.126) 

Notes:  
1. m1 and m2 are tests for the first- and second-order serial correlation, asymptotically 

N(0,1). Sargan and Dsar are the statistics for the overidentification tests.  Comfac is 
a minimum distance test of the non-linear common factor restrictions imposed in the 
restricted models.  Crs is a Wald test of the constant returns to scale hypothesis 
under the restricted model. 

2. Asymptotic standard errors in parentheses for OLS and Within, and corrected two-
step standard errors for GMMD and GMMS. Year and sectoral dummies included in 
all models. 
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A2.2 : Cobb-Douglas Production Function with Capital Operating Time  
and Working Time 

 

 Ols Within 
GMMD 
(t-2/t-4) 

GMMD 
(t-3/t-5) 

GMMS 
(t-2/t-4) 

GMMS 
(t-3/t-5) 

1ty −  0.909 0.5 0.033 0.126 0.784 0.759 
 (0.017) (0.044) (0.091) (0.117) (0.068) (0.083) 
tl  0.59 0.648 0.498 0.495 0.644 0.569 
 (0.066) (0.069) (0.178) (0.217) (0.15) (0.147) 
1tl −  -0.522 -0.274 0.086 -0.025 -0.415 -0.379 
 (0.066) (0.077) (0.203) (0.193) (0.142) (0.145) 
tk  0.191 0.228 -0.103 -0.098 0.373 0.316 
 (0.072) (0.066) (0.223) (0.199) (0.242) (0.201) 

1tk −  -0.167 -0.183 -0.089 0.062 -0.381 -0.239 
 (0.07) (0.078) (0.235) (0.187) (0.229) (0.183) 

tdht  0.184 0.362 0.606 0.272 0.507 0.413 
 (0.113) (0.114) (0.275) (0.333) (0.389) (0.307) 

1tdht −  -0.084 0.085 0.3 0.256 -0.572 0.034 
 (0.093) (0.104) (0.363) (0.294) (0.348) (0.357) 

tnop  0.116 0.139 -0.018 0.025 0.196 0.305 
 (0.038) (0.045) (0.137) (0.139) (0.112) (0.13) 

1tnop −  -0.095 -0.059 0.007 -0.185 -0.051 -0.279 
 (0.036) (0.046) (0.093) (0.124) (0.081) (0.133) 

m1 -1.37 3.43 -1.25 -1.87 -5.82 -5.13 
p-value (0.172) (0.001) (0.212) (0.062) 0 0 

m2 -0.64 -0.08 -1.71 -1.27 -0.78 -0.45 
p-value (0.522) (0.935) (0.087) (0.203) (0.438) (0.651) 
Comfac 7.27 7.27 1.24 3.01 4.87 2.14 
p-value (0.122) (0.123) (0.871) (0.556) (0.301) (0.71) 
Sargan   97.54 85.01 149.71 124.4 
p-value   (0.523) (0.759) (0.183) (0.646) 

Dsar     52.17 39.39 
p-value     (0.04) (0.321) 

Dynamic Representation 
ρ  0.904 0.503 0.031 0.083 0.777 0.768 
 (0.017) (0.043) (0.082) (0.114) (0.071) (0.073) 
Lβ  0.649 0.653 0.463 0.481 0.826 0.686 
 (0.056) (0.071) (0.171) (0.208) (0.102) (0.122) 
Kβ  0.301 0.204 -0.115 -0.105 0.158 0.344 
 (0.048) (0.065) (0.151) (0.19) (0.112) (0.108) 

DHTβ  0.148 0.283 0.53 0.185 0.493 0.275 
 (0.096) (0.104) (0.291) (0.344) (0.277) (0.231) 

NOPβ  0.112 0.135 0.003 0.024 0.052 0.301 
 (0.038) (0.042) (0.123) (0.146) (0.091) (0.145) 

Crs 1.33 3.24 11.08 5.67 0.02 0.11 
p-value (0.249) (0.072) (0.001) (0.017) (0.894) (0.735) 

K NOPβ β=  9.11 0.756 0.49 0.37 0.55 0.05 
p-value (0.00) (0.384) (0.49) (0.54) (0.46) (0.83) 
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Table A2.2 (Con’t): Cobb-Douglas Production Function with Capital Operating Time  
and Working Time 

 

Constrained Estimation 1L Kβ β+ =  

 Ols Within 
GMMD 
(t-2/t-4) 

GMMD 
(t-3/t-5) 

GMMS 
(t-2/t-4) 

GMMS 
(t-3/t-5) 

ρ  0.898 0.493 0.097 0.062 0.594 0.538 
 (0.016) (0.042) (0.084) (0.114) (0.122) (0.118) 

Lβ  0.685 0.724 0.817 0.901 0.833 0.655 
 (0.045) (0.055) (0.137) (0.159) (0.098) (0.154) 

DHTβ  0.155 0.296 0.616 0.298 0.619 0.459 
 (0.097) (0.104) (0.3) (0.357) (0.304) (0.215) 

NOPβ  0.107 0.129 0.015 0.097 0.206 0.519 
 (0.039) (0.042) (0.129) (0.155) (0.086) (0.134) 

K NOPβ β=  11.45 4.24 0.94 0.00 0.15 1.06 
p-value (0.00) (0.04) (0.33) (0.99) (0.70) (0.30) 

Note: See Table A2.1 
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A2.3 : Cobb-Douglas Production Function with Shiftwork 

 Ols Within 
GMMD 
(t-2/t-4) 

GMMD 
(t-3/t-5) 

GMMS 
(t-2/t-4) 

GMMS 
(t-3/t-5) 

1ty −  0.909 0.509 0.03 0.135 0.786 0.787 
 (0.018) (0.043) (0.091) (0.113) (0.068) (0.073) 
tl  0.585 0.64 0.518 0.483 0.654 0.568 
 (0.066) (0.069) (0.181) (0.221) (0.155) (0.154) 
1tl −  -0.518 -0.272 0.094 -0.027 -0.43 -0.41 

 (0.066) (0.078) (0.198) (0.189) (0.155) (0.149) 
tk  0.2 0.236 -0.102 -0.136 0.367 0.334 
 (0.071) (0.067) (0.196) (0.198) (0.236) (0.201) 

1tk −  -0.176 -0.208 -0.086 0.104 -0.381 -0.264 
 (0.07) (0.078) (0.227) (0.18) (0.22) (0.183) 

tnop  0.114 0.137 0.022 0.015 0.221 0.296 
 (0.039) (0.047) (0.123) (0.138) (0.112) (0.126) 

1tnop −  -0.097 -0.065 0.018 -0.19 -0.059 -0.297 
 (0.037) (0.046) (0.092) (0.123) (0.086) (0.118) 

m1 -1.34 3.44 -1.17 -1.94 -5.63 -5.32 
p-value (0.181) (0.001) (0.240) (0.052) (0.00) (0.00) 

m2 -0.54 0.16 -1.15 -1.01 -0.5 -0.27 
p-value (0.591) (0.876) (0.249) (0.312) (0.615) (0.785) 
Comfac 5.74 2.19 0.58 2.75 4.52 1.6 
p-value (0.125) (0.535) (0.9) (0.433) (0.211) (0.659) 
Sargan   99.14 85.92 156.17 124.3 
p-value   (0.534) (0.782) (0.126) (0.693) 

Dsar     57.03 38.37 
p-value     (0.014) (0.362) 

Dynamic Representation 
ρ  0.905 0.513 0.034 0.09 0.788 0.774 
 (0.017) (0.043) (0.083) (0.110) (0.062) (0.071) 
Lβ  0.644 0.646 0.509 0.482 0.836 0.674 
 (0.056) (0.071) (0.176) (0.212) (0.104) (0.125) 
Kβ  0.303 0.202 -0.11 -0.113 0.143 0.338 
 (0.048) (0.065) (0.147) (0.183) (0.116) (0.11) 

NOPβ  0.111 0.133 0.031 0.017 0.053 0.299 
 (0.038) (0.042) (0.113) (0.146) (0.091) (0.138) 

Crs 1.5 3.69 9.58 5.99 0.03 0.02 
p-value (0.220) (0.055) (0.002) (0.014) (0.866) (0.896) 

 9.37 0.73 0.72 0.37 0.36 0.04 
p-value (0.000) (0.390) (0.400) (0.540) (0.550) (0.840) 

Constrained Estimation 1L Kβ β+ =  
ρ  0.898 0.504 0.085 0.062 0.578 0.534 
 (0.016) (0.042) (0.09) (0.113) (0.114) (0.132) 
Lβ  0.681 0.721 0.846 0.921 0.82 0.616 
 (0.045) (0.056) (0.141) (0.155) (0.1) (0.141) 

NOPβ  0.106 0.127 0.046 0.089 0.231 0.523 
 (0.039) (0.043) (0.121) (0.161) (0.092) (0.119) 

K NOPβ β= 11.95 4.46 0.40 0.00 0.22 0.68 
p-value (0.00) (0.030) (0.530) (0.970) (0.640) (0.410) 
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A2.4 : Cobb-Douglas Production Function with Alternative Shiftwork indicators 
(GMMS estimates) 

 

 
Arithmetic 
Approach 

Harmonic 
Approach 

1t−y  0.788 0.789 
 (0.072) (0.078) 
tl  0.56 0.551 
 (0.154) (0.149) 
1t−l  -0.403 -0.387 
 (0.15) (0.155) 
tk  0.334 0.296 
 (0.2) (0.2) 

1tk −  -0.263 -0.236 
 (0.184) (0.185) 

tnop  0.285 0.345 
 (0.119) (0.207) 

1tnop −  -0.289 -0.35 
 (0.112) (0.177) 

m1 -5.32 -5.23 
p-value (0..00) (0.00) 

m2 -0.27 -0.32 
p-value (0.787) (0.747) 
Comfac 1.7 2.01 
p-value (0.637) (0.57) 
Sargan 124.49 119.95 
p-value (0.689) (0.784) 
Dsar 38.28 36.69 

p-value (0.366) (0.437) 
Dynamic Representation 

ρ  0.774 0.778 
 (0.071) (0.07) 
Lβ  0.671 0.672 
 (0.127) (0.116) 
Kβ  0.343 0.319 
 (0.111) (0.103) 

NOPβ  0.288 0.397 
 (0.131) (0.222) 

Crs 0.02 0.01 
p-value (0.880) (0.922) 
K NOPβ β=  0.09 0.11 

p-value (0.760) (0.740) 
Constrained Estimation 1L Kβ β+ =  

ρ  0.537 0.542 
 (0.128) (0.123) 
Lβ  0.618 0.611 
 (0.135) (0.100) 

NOPβ  0.507 0.7 
 (0.112) (0.204) 

K NOPβ β=  0.60 1.69 
p-value (0.44) (0.19) 
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A2.5  Four-factors Translog Production Function - GMMS Estimates 

 Unconstrained 
Estimation 

Regularity Conditions 

ρ  0.701 0.694 
 (0.058) (0.078) 
Lβ  0.612 0.623 
 (0.084) (0.089) 

Kβ  0.315 0.307 
 (0.054) (0.053) 

Nβ  0.139 0.187 
 (0.074) (0.077) 

Dβ  0.16 0.244 
 (0.168) (0.188) 

LLβ  0.128 0.062 
 (0.083) (0.092) 

KKβ  0.073 0.033 
 (0.053) (0.060) 

NNβ  0.111 0.005 
 (0.117) (0.102) 

DDβ  -0.132 -0.160 
 (1.125) (1.207) 

KLβ  -0.218 -0.121 
 (0.125) (0.139) 

KNβ  -0.113 -0.026 
 (0.074) (0.072) 

LNβ  0.198 0.083 
 (0.106) (0.100) 

LDβ  0.488 0.122 
 (0.307) (0.333) 

KDβ  -0.288 -0.063 
 (0.202) (0.207) 

NDβ  0.144 -0.036 
 (0.531) (0.594) 

Note: Corrected two-step standard errors. Year and sectoral dummies 
included in all models. 
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A2.6 Three-factors Translog Production Function 

 Unconstrained Estimation Regularity Conditions 
ρ  0.698 0.697 
 (0.061) (0.075) 

Lβ  0.601 0.607 
 (0.081) (0.092) 

Kβ  0.326 0.314 
 (0.050) (0.053) 

Nβ  0.132 0.196 
 (0.075) (0.076) 

LLβ  0.117 0.06 
 (0.078) (0.085) 

KKβ  0.074 0.035 
 (0.050) (0.056) 

NNβ  0.116 -0.011 
 (0.112) (0.103) 

KLβ  -0.221 -0.126 
 (0.116) (0.125) 

KNβ  -0.117 -0.024 
 (0.077) (0.08) 

LNβ  0.207 0.08 
 (0.107) (0.105) 

Note: Corrected two-step standard errors. Year and sectoral dummies included 
in all models. 
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